100=-16t^2+80t+32

Simple and best practice solution for 100=-16t^2+80t+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=-16t^2+80t+32 equation:



100=-16t^2+80t+32
We move all terms to the left:
100-(-16t^2+80t+32)=0
We get rid of parentheses
16t^2-80t-32+100=0
We add all the numbers together, and all the variables
16t^2-80t+68=0
a = 16; b = -80; c = +68;
Δ = b2-4ac
Δ = -802-4·16·68
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-32\sqrt{2}}{2*16}=\frac{80-32\sqrt{2}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+32\sqrt{2}}{2*16}=\frac{80+32\sqrt{2}}{32} $

See similar equations:

| 68=p-12;p= | | 2z(3z+0,5)=6z^2-6,5 | | 2=6j-14 | | 7y+20=11y-50 | | 2/3c–2=2+cc= | | 25x+27=102x | | x^2+6x+2=74 | | 20t-14=24t-42 | | 16x+20=540 | | x-16=85 | | x-285=127x | | 0.25x+7=4(4x-2) | | -3-7y=4 | | f(8)=1000(∛8)+1000 | | 16x+-4=540 | | 16x+-20=540 | | x=7+29 | | 25(n)=156.25–31.25 | | 25(n)=156.25–31.25 | | w–4=6 | | 6=(3/5)(10-5x) | | 20t-20=24t-42 | | 8+5n-6=37 | | 19,1y-4(y+0,3)=46,5 | | 8x-2=70x | | 4(d+7)=16 | | 16x+-20=360 | | 19,1-4(y+0,3)=46,5 | | 3/x=12-2 | | 13b+3=16b-27 | | y=5.25 | | 15z-33=8z+44 |

Equations solver categories